SwiftTuna: Incrementally Exploring Large-scale Multidimensional Data

Jaemin Jo jmjo@hcil.snu.ac.kr
Wonjae Kim wjkim@hcil.snu.ac.kr
Seunghoon Yoo shyoo@hcil.snu.ac.kr
Bohyoung Kim bkim@hufs.ac.kr
Jinwook Seo jseo@snu.ac.kr

Seoul National University
Dept. of Computer Science & Engineering

Human-Computer Interaction Laboratory
http://hcil.snu.ac.kr

Summary

Challenges in low-latency data exploration of large-scale data
- Precomputed data structures (e.g., data cubes) have been often used
- Required a large amount of memory (e.g., limited # of dimensions)
- Only targeted single machine scenarios

Rapid and incremental exploration without precomputation
- Incremental data processing for responsiveness
- Visualizations designed for scalability
- Uncertainty visualizations for approximate queries

Bringing modern cluster computing technologies to InfoVis
- Exploit in-memory computing engine (i.e. Apache Spark)

Design Consideration

Process results incrementally while estimating the final results
- Adopted gradient plots to visualize the uncertainty of partial results
- 95% confidence intervals of counts and means

Enable flexible scheduling of queries
- Pause or stop queries in real time if partial results are enough

Scalability in visualizations
- Binned plots with the Focus+Context techniques
- Designed tailed charts to summarize many categories on the x-axis

Provide low-fidelity feedback promptly
- Based on a small sample from the data (i.e., 0.001% of entries)

Performance Benchmark

Used Criteo’s Terabyte Click Logs dataset
- 1.03 TB csv, 4.3B entries and 40 dimensions
- 16 r3.8xlarge instances on Amazon Web Services (AWS)
 - Intel E5-2670 v2 (32 vCPUs), 244 GB of memory, and 2 * 320 GB SSD

Measured mean interval between two successive responses
- 240 blocks (1.75M rows per block) and 2,400 blocks (17.5M rows per block)

<table>
<thead>
<tr>
<th>Type</th>
<th>Range or Cardinality</th>
<th>2,400 Blocks (s)</th>
<th>240 Blocks (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binned Histogram</td>
<td>0 – 35M</td>
<td>1.91 ± 0.84</td>
<td>3.54 ± 1.58</td>
</tr>
<tr>
<td>Frequency Histogram</td>
<td>0 – 746K, 0 – 35M</td>
<td>1.88 ± 0.61</td>
<td>3.46 ± 1.05</td>
</tr>
<tr>
<td>Pivot Dot Plots (MEAN)</td>
<td>0 – 35M, 7.4K</td>
<td>2.53 ± 1.21</td>
<td>3.88 ± 0.93</td>
</tr>
</tbody>
</table>

Each incremental process on a block took approx. 2 seconds

Trade-off between responsiveness and throughput
- Smaller blocks → better responsiveness, larger blocks → better throughput
- Find the optimum number and size of blocks

Conclusion & Future Work

Proposed an interactive system for fluent exploration of large-scale multidimensional data
- Harmony between information visualization and distributed computing

Extend the system to a general platform for incremental visual analytics

Interface Design

The main interface of SwiftTuna

A tailed gradient plot is showing confidence intervals

A tailed dot plot