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Figure 1: Projection Ensemble recognizes robust structures in multidimensional projections. A) A randomly initialized t-SNE
projection of the MNIST dataset generated by stochastic gradient descent. The viewer may interpret groups of points (a) and (b) as
individual clusters, which, in fact, have intricate intra- or inter-cluster relationships. B) Projection Ensemble visualizes two robust
structures identified by extracting common subgraphs between ten randomly initialized projections; these are the structures that the
ten projections “agree on.” This reveals that (a) actually consists of two entangled structures (group (c) and the other points), and a
subgroup of the cluster (b) is found to be closer to a distant cluster (see (d)). This can be done without using ground-truth class
labels or clustering high-dimensional points. C) The ground-truth class labels are shown as the color of points.

ABSTRACT

We introduce Projection Ensemble, a novel approach for identifying
and visualizing robust structures across multidimensional projec-
tions. Although multidimensional projections, such as t-Stochastic
Neighbor Embedding (t-SNE), have gained popularity, their stochas-
tic nature often leads the user to interpret the structures that arise by
chance and make erroneous findings. To overcome this limitation,
we present a frequent subgraph mining algorithm and a visualization
interface to extract and visualize the consistent structures across
multiple projections. We demonstrate that our system not only iden-
tifies trustworthy structures but also detects accidental clustering or
separation of data points.

Index Terms: Human-centered computing—Visualization—Visu-
alization systems and tools

1 INTRODUCTION

Multidimensional projections (MDP) have been widely employed to
visualize high-dimensional data in various fields, such as natural lan-
guage processing [13], macromolecule analysis [4], and information
visualization [12,22]. The non-linear MDP techniques compute low-
dimensional representations of input points by minimizing a loss
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function that measures the difference between the distribution of the
input points in the original high-dimensional space and that of the
projected, low-dimensional representations. Since such a loss mini-
mization process usually does not have a closed-form solution, many
popular non-linear MDP techniquessuch as t-Stochastic Neighbor
Embedding (t-SNE) [21] and Uniform Manifold Approximation and
Projection (UMAP) [14]rely on an iterative optimization method,
gradient descent (GD) [17], to find an approximate solution in a
reasonable time.

One limitation of those MDP techniques is that they are not
deterministic; they produce different projections each time they
run. There are two main reasons behind such inconsistency. First, to
make the optimization process more efficient in practice, GD is often
replaced with stochastic gradient descent or mini-batch gradient
descent. In contrast to GD where all data points are considered
in each iteration of the process, these methods shuffle the order of
input data and update the projection according to the gradient of
one (stochastic) or a fixed number (mini-batch) of points. Therefore,
the result can vary depending on the order in which the input points
are processed. Second, to initiate the optimization process, the
initial position of each data point in the 2D projection must be
determined. This position is often randomly assigned, introducing
another random factor into the process.

The stochastic nature of non-linear MDP techniques raises an
important question: which parts of a projection are robust across
multiple runs, and which are merely a result of chance due to random-
ness? Previous methods to address this issue include 1) providing
a fixed seed number to the random number generator and 2) creat-
ing the initial layout using a deterministic MDP technique such as



Principal Component Analysis (PCA) [8] so that the influence of
the initial layout can be reduced. However, these ad-hoc approaches
do not fully answer the question; they focus on making an MDP
technique deterministic or less sensitive to randomness, but it does
not necessarily mean that the structures revealed in the result are
robust to stochasticity.

As our answer to the question, we introduce Projection Ensem-
ble (Fig. 1), a novel approach that detects and visualizes the robust
structures in MDPs. The main idea of Projection Ensemble is to
generate multiple projections and identify structures that those pro-
jections commonly have. To this end, we first elaborate on an
algorithm that elicits common structures from multiple projections
and then present a user interface that visualizes the structures. Fi-
nally, our use case demonstrates that our approach not only confirms
consistent structures across projections but also identifies less stable
structures that arise due to chance.

2 RELATED WORK

Visual Analytics on MDP. Prior studies have introduced visual
analytics systems to understand the inner workings of MDP tech-
niques and prompt their reliability. For instance, Stahnke et al. [18]
proposed a probing technique that allows the user to examine the
distortion between the original multi-dimensional data and their
projection. Similarly, t-viSNE [2] facilitates the interactive explo-
ration of MDPs by allowing the user to inspect various aspects of
the optimization process, such as the effects of hyperparameters
and neighborhood preservation. Recently, Jeon et al. [9] proposed
novel metrics, Steadiness and Cohesiveness, to measure the inter-
cluster reliability of MDPs and a visualization technique to show the
distortion of a projection.

While these systems focus on analyzing the relationship between
the original and projected data points in a single projection, there
also exist visual analytics systems that allow comparison between
projections. For example, Compadre [5] enables the comparison of
two different projections, employing a matrix-based visualization
technique. Another example is EvoSets [19], which quantifies and
visualizes changes happening in MDPs when particular attributes
are added or removed. In this work, however, we are interested in
structural changes due to randomness rather than differences in MDP
techniques or data. Our system not only allows for the comparison of
over twenty projections but also locates consistent structures across
the projections.

Frequent Subgraph Mining. In this work, we solve the prob-
lem of finding the consistent structures between MDPs inspired
by the Frequent Subgraph Mining (FSM) problem [10]. The
goal of FSM is to identify all subgraph structures that appear
in different graphs simultaneously. Specifically, when a set of
graphs G = {G1,G2, ...,GN} and a minimum support threshold
minsup (minsup ≤ N) are given, FSM is to find a set of frequent
subgraphs, denoted as F , which is defined as follows:

supG(g) = ∥{Gi | g⊆ Gi}∥

F = {g | supG(g)≥ minsup}
FSM algorithms have been widely used across various domains

to detect co-occurring patterns between multiple targets, such as in
chemistry [7], bioinformatics [3], computer vision [1], and visual an-
alytics [6]. In this paper, we present a relaxed version of FSM along
with an efficient algorithm that finds the largest non-overlapping
components among these frequent subgraphs.

3 PROJECTION ENSEMBLE

In this section, we present Projection Ensemble, a system designed to
capture and visualize robust structures found in multiple MDPs. We
begin by introducing our algorithm that identifies these structures,
inspired by the FSM problem. We then elaborate on the design of
visualization and user interaction.

Algorithm 1 Relaxed version of Frequent Subgraph Mining
Input: a graph set G= {G1,G2, . . . ,Gk},minimum support minsup
Output: a frequent subgraph set F

1: U ←
⋃

Gi∈G Gi
2: for all e ∈ E(U) do
3: support(e)← CountOccurrences(e,G)
4: if support(e)< minsup then
5: E(U)← E(U)\ e
6: end if
7: end for
8: F ← GetDisconnectedGraphs(U)
9: return F

3.1 Generating a Projection Set
We search for clusters of data points that consistently appear together
across multiple projections, indicating that they likely represent
existing structures in the input data, not being generated by chance.
To this end, we first define a projection set that consists of multiple
MDPsof the same input data. By default, we generate a projection
set of ten randomly initialized t-SNE projections that only differed
in their initial layout. Note that the projections can be generated
using different hyperparameters depending on the user’s interests.
For example, to compare the impact of hyperparameters, one can use
a set of t-SNE projections initialized with different hyperparameters.

3.2 Building kNN Graphs
In the second step, we derive a graph set from a projection set by
converting each projection in the projection set to an undirected k-
Nearest Neighbors (kNN)graph by linking every point to its k nearest
neighbors in the 2D projection space. Note that the kNN graphs
built here are different from the kNN graphs used for computing
projections, e.g., for Barnes-Hut Approximation [20]; the former is
built for projected 2D data points, while the latter are constructed
for the high-dimensional original data points.

3.3 Relaxation of Frequent Subgraph Mining
We find consistent subgraph structures between kNN graphs by
formulating it as a relaxed version of the FSM problem. FSM is a
problem of identifying subgraphs that occur more than a specified
threshold in input graphs set [10]. However, we found that previous
algorithms for FSM are not suitable for interactive scenarios as their
computational cost is too high.

To speed up the computation, we relaxed the constraints of the
original problem in two ways: first, the original FSM problem
assumes that all nodes are unlabeled , so it is difficult to check if
two subgraphs structures are isomorphic, which is indeed an NP
problem. However, we found that this constraint could be relaxed in
our case since each node in a kNN graph corresponds to a data item
with their identity known, allowing us to detect graph isomorphism
in a polynomial time; more precisely, our dataset consists of graphs
with identical nodes but different links, meaning that we can check
for graph isomorphism by simply checking if every link in a graph
is present in the other graph without performing a node matching.

The second relaxation we made pertains to the determination of
frequent subgraphs. Strictly speaking, a subgraph can be said to
be frequent if it appears in all (or most of) graphs in G. However,
we found such a constraint too strict, resulting in many small and
fragmented subgraphs. Instead, we apply such a constraint on a
link basis; a link is frequent if it exists in at least minsup graphs
of G where minsup is a minimum support specified by the user,
and a subgraph is frequent if every link is frequent. This relaxation
of the constraint on frequent subgraphs allows for a more efficient
incremental algorithm, as we no longer require that a subgraph
appears as a whole.



Figure 2: The Projection Ensemble interface. (A) Projection Set Generation Tab, (B) Hyperparameter View, (C) Class-FS Relationship View, and
(D) Ensemble View.

Our algorithm for solving the relaxed version of FSM is outlined
in Algorithm 1. Given the input graph set G from the second step,
the algorithm computes a set of disjoint frequent subgraphs, F . The
algorithm starts with creating a union graph that contains all the
nodes and links from the input graphs. Next, we count the frequency
of each link in the union graph and prune each if it has a frequency
lower than minsup. After pruning infrequent links, the union graph
is typically split into disconnected components, and each component
becomes a frequent subgraph.

3.4 Visualizing Frequent Subgraphs
There are two possible outcomes of FSM for each data point: 1) it
can be assigned to a frequent subgraph by having the index of the
subgraph stored in its FS id attribute, or 2) it can be considered an
outlier and have an FS id value of 0. If there is no class information
in the data, the categorical FS id attribute can be overlaid on a con-
ventional scatterplot by encoding it as the color of a point. However,
when a class label (hereafter, class) is already present in the data,
such as in the case of the digit attribute in the MNIST data [11],
visualizing both categorical attributes on the same scatterplot can be
challenging.

We decided to show class as the color (hue) of a point and
FS id as textured contours where data points belonging to the same
subgraph are contained in a contour, as shown in Fig. 1C. We tested
different combinations of identity channels to show the two cate-
gorical attributes on a scatterplot, such as using concentric circles
with two hues, color and shape, and animated transitions, most of
which resulted in overplotting and visual clutter. We could also apply
the encoding in the opposite way, i.e., mapping class to textured
contours and FS id to color, but we found the current encoding
more effective for two reasons; 1) encoding class as the color of
a point is more familiar to the user, and 2) points belonging to the
same frequent subgraph are more likely to be close to each other in
a projection compared to points belonging to the same class, making
them more suitable for being contained within a concise contour.

With the visual encoding discussed, we present the Project Ensem-
ble interface where the user can interactively conduct and analyze
the robustness of MDPs(Fig. 2). The user interface consists of four
components. The first Projection Set Generation Tab (Fig. 2A)

allows the user to specify the data to analyze and the configuration
of a projection set. By default, we generate a projection set of ten t-
SNE projections. After choosing the data and configuration, the user
can initiate the FSM process by clicking on the “Generate” button.

The number of frequent subgraphs differs according to the values
of two hyperparameters, the number of neighbors in the kNN graph
(k) and the minimum support (minsup), which the user specifies. To
facilitate the hyperparameter selection process, we employ a grid
search approach; we chose five and six candidates for the two hyper-
parameters, respectively, and run the mining process for every pair
of candidates. The result is shown as a heatmap in Hyperparameter
View (Fig. 2B) where the number of frequent subgraphs for each
pair of hyperparameters is shown and color-encoded in a cell. The
user can click on a cell to see the result of a specific pair.

Class-FS Relationship View (Fig. 2C) visualizes the relation-
ship between the given class labels (class) and frequent subgraphs
(FS id) as a Sankey diagram. On the left, classes are depicted as
colored bars with each having height proportional to the number of
points in the corresponding class. On the right, frequent subgraphs
are shown as textured bars again with the height proportional to the
number of nodes in the corresponding subgraphs. We assign distinct
textures to the top ten largest subgraphs, and the other relatively
small subgraphs are aggregated to the 11th light gray bar without
textures. Outlying points, points that do not belong to any frequent
subgraph, are shown as the last dark gray bar. The thickness of
the link between two bars represents the number of points shared
between a class and a frequent subgraph. The colors and textures of
bars are consistently used throughout the interface.

In Ensemble View (Fig. 2D), we visualize each projection in the
generated projection set as a scatterplot with the color and texture
encoding discussed above. The projections are aligned by applying
Procrustes transformation [16] to provide spatial coherence. The
Ensemble View is linked with the Class-FS Relationship View, al-
lowing the user to highlight a certain class or subgraph by hovering
the cursor over it or toggle its visibility by clicking on it.

The source code of Projection Ensemble is available at https:
//github.com/jjmmwon/ProjectionEnsemble.

https://github.com/jjmmwon/ProjectionEnsemble
https://github.com/jjmmwon/ProjectionEnsemble


4 EVALUATION

We present a use case to show how our system can reveal con-
sistent/inconsistent structures between randomly initialized t-SNE
projections.

Dataset and Settings. As an input dataset, we used 50,000 28x28
images of the MNIST dataset [11], with 5,000 images representing
each digit. Each image was encoded as a 784-dimensional vec-
tor. We generated a projection set of ten t-SNE projections using
the same t-SNE hyperparameters (perplexity = 45 and the default
values for the rest defined in the scikit-learn library [15]). Each
projection was initialized randomly and optimized by stochastic gra-
dient descent, resulting in slightly different projections, as illustrated
in Fig. 2D. The Hyperparmeter View (Fig. 2B) shows the number
of the generated frequent subgraphs for each hyperparameter com-
bination of k and minsup used in our FSM algorithm. We set k
and minsup to 13 and 7, respectively, which resulted in 20 frequent
subgraphs.

Revealing Intra-Cluster Consistency. The results of our system
are presented in Fig. 2. It is worth noting that the ground-truth
labels are color-encoded in the figure to facilitate the comparison
between the ground-truth structures and the insights we gained from
our system; they are not used in our algorithm. We first observed
that our system could reveal consistent intra-cluster structures in a
projection. For example, in the first projection in Fig. 2D, subgraphs
(a) and (b) appeared to form a large cluster if no class or subgraph
information was given. Our system was able to provide additional
detail about this cluster, highlighting that it was actually composed
of two “entangled” structures, subgraphs (a) and (b). Indeed, it
turned out that subgraph (a) contained images of digit ‘4’ while
subgraph (b) was made up of images of digit ‘9’, which looked
similar in the pixel space.

Another interesting observation is that despite points in subgraph
(a) being separated into two groups (upper and lower) in eight out
of the ten projections , the system was able to recognize that those
groups belong to the same subgraph. This could be possible because
the algorithm uses multiple projections to identify structures that are
consistent across projections. Therefore, even if a particular projec-
tion, e.g., the first projection in Fig. 2D, separates two points into
different groups, the algorithm can still recognize that they belong
to the same subgraph if they are consistently grouped together in
other projections, providing robustness over multiple runs. Fig. 2D
suggests that the separation of the subgraph (a) in the first projection
may appear due to the stochastic nature of t-SNE

Revealing Inter-Cluster Consistency. We also found out that
our system could reveal the consistent structures between clusters,
i.e., inter-cluster consistency. For example, in Fig. 2D, subgraph (c)
indicates that two distant groups of points that seemingly belong
to different clusters are, in fact, connected. We observed this type
of separation in four out of ten projections, suggesting that the
separation is inconsistent. Interestingly, we also observed that when
such separation occurred, another cluster was found to be located
between the two groups. This implies that the images within that
cluster are likely to be similar to those in the two separated groups.
Confirming these insights, the ground-truth labels showed that the
two groups in subgraph (c) contained images of the same digit ‘5’,
while the cluster between them consisted of images of the digit ‘3’,
which were similar to the images of ‘5’ in the pixel space.

Confirming Consistent Clusters. Our system is not only capable
of identifying less stable cluster structures such as subgraphs Fig. 2D
(a)-(c) but also of discovering consistent clusters across projections.
For example, in Fig. 2D, clusters containing subgraphs (d) and
(e) are sorely in a contour, indicating that the cluster structures
are consistent across multiple runs. Indeed, those clusters mostly
contained images of a single digit, ‘1’ and ‘6’, respectively.

Another interesting observation that could be made is about sub-
graph (f) in Fig. 2D. Similar to (d) and (e), it exhibited a single

Figure 3: The images of non-zero digits in subgraph (f) in Fig. 2. They
actually resemble zeroes, suggesting that the images of non-zero
digits in subgraph (f) are not an artifact of an MDP technique.

consistent cluster. If ground-truth labels were available, one would
observe that the subgraph primarily consists of images of ‘0’ but
also includes images of other digits. While one might suspect these
images of non-zero digits as artifacts resulting from the optimization
process, our system can verify that they are not artifacts and con-
stantly appear alongside images of zeroes; in fact, as shown in Fig. 3,
the images of non-zero digits in subgraph (f) resemble zeroes.

Effect of Hyperparameters. Fig. 2B exhibits the effect of the
two hyperparameters, k and minsup, on the number of frequent
subgraphs identified. A higher value of k and a lower value of
minsup result in a union graph with more edges, where it is easier
for points to be grouped as frequent subgraphs. As a result, a small
number of relatively large subgraphs are identified. Conversely,
a lower value of k and a higher value of minsup make it much
harder for points to be grouped, resulting in a small number of tiny
subgraphs, leaving most points as outliers. We found that the number
of frequent subgraphs increases when k and minsup strike a balance;
empirically, we found that having approximately twenty subgraphs
with the top ten subgraphs including 80% of points in total is a good
starting point for analysis.

Summary. Our use case shows that relying on a single projection
can lead to misunderstandings of the underlying structure of the data.
It also demonstrates how such a limitation could be complemented
by the identification and visualization of robust structures across
multiple projections.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce Projection Ensemble, a novel system
that identifies and visualizes consistent structures across MDP. De-
pending on the initial conditions and the stochastic nature of non-
linear MDP algorithms, MDPs can include noisy structures that
arise accidentally. Thus, relying on a single projection may lead
to misunderstandings of the underlying structure of the data. Our
system addresses this issue by identifying and visualizing consistent
structures in multiple projections, which are less likely to be the
result of random noise.

There are several directions for future work. First, although we
used kNN to convert a projection to a graph, further exploration of
various graph generation techniques is needed. Additionally, our
system can be extended to assess the consistency of other MDP
techniques, such as UMAP [14]. Lastly, the current textured con-
tour generation algorithm may lead to visual clutter and scalability
challenges, particularly in cases with many outliers, which requires
further investigation and improvement.
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